
Received: 20 October 2021 | Accepted: 25 February 2022

DOI: 10.1002/jcp.30721

R EV I EW AR T I C L E

DNA damage response signaling pathways as important
targets for combination therapy and chemotherapy
sensitization in osteosarcoma

Forough Alemi1 | Faezeh Malakoti1 | Mostafa Vaghari‐Tabari1 |

Jafar Soleimanpour2 | Nazila Shabestani1 | Aydin R. Sadigh1 | Nafiseh Khelghati3 |

Zatollah Asemi4 | Yasin Ahmadi5 | Bahman Yousefi1

1Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

2Department of Orthopedics Surgery, Shohada Teaching Hospital, Tabriz University of Medical Sciences, Tabriz, Iran

3Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

4Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran

5Department of Medical Laboratory Sciences, Faculty of Science, Komar University of Science and Technology, Soleimania, Kurdistan Region, Iraq

Correspondence

Bahman Yousefi, Department of Biochemistry

and Clinical Laboratories, Faculty of Medicine,

Tabriz University of Medical Sciences, Tabriz,

Iran.

Email: yousefib@tbzmed.ac.ir

Yasin Ahmadi, Department of Medical

Laboratory Sciences, Faculty of Science, Komar

University of Science and Technology,

Soleimania, Kurdistan Region, Iraq.

Email: ahmadi.bchemistry@yahoo.com

Abstract

Osteosarcoma (OS) is the most common bone malignancy that occurs most often in

young adults, and adolescents with a survival rate of 20% in its advanced stages.

Nowadays, increasing the effectiveness of common treatments used in OS has

become one of the main problems for clinicians due to cancer cells becoming

resistant to chemotherapy. One of the most important mechanisms of resistance to

chemotherapy is through increasing the ability of DNA repair because most

chemotherapy drugs damage the DNA of cancer cells. DNA damage response (DDR)

is a signal transduction pathway involved in preserving the genome stability upon

exposure to endogenous and exogenous DNA‐damaging factors such as chemo-

therapy agents. There is evidence that the suppression of DDR may reduce

chemoresistance and increase the effectiveness of chemotherapy in OS. In this

review, we aim to summarize these studies to better understand the role of DDR in

OS chemoresistance in pursuit of overcoming the obstacles to the success of

chemotherapy.
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1 | INTRODUCTION

Osteosarcoma (OS) is a prevalent bone malignancy that originated

from osteoid‐producing malignant cells of the mesenchymal

(Malakoti et al., 2021). Despite its low incidence rate (3 per

100 million), fatality in both children and adults is high due to poor

prognosis, early metastasis occurrence, and treatment limitations

(Harrison et al., 2018; Y. Zhang et al., 2018). The combination of both

surgery and chemotherapy is the current standard treatment for OS.

However, patients are often forced to alter their chemotherapy

regimens because of drug resistance (Ahmadi et al., 2020; Bazavar

et al., 2020). Since the chemotherapy drugs mainly induce cancer

cells apoptosis through creating DNA damage, the enhancement of

DNA repair ability in these cells is one of the most critical

mechanisms of chemoresistance (Harrison et al., 2018; Sadoughi

et al., 2021). DNA damage response (DDR) is known as a genome

preserving pathway that stabilizes DNA upon exposure to endogen-

ous and exogenous damaging factors like chemotherapy drugs.

Studies to date have shown that DDR has a fascinating association

with chemoresistance in OS (Sadoughi et al., 2021). There are two

subclasses of DDR signaling pathways; Ataxia‐telangiectasia mutated

(ATM)/Ataxia telangiectasia and Rad3 related (ATR) pathway and

DNA‐PKcs pathway, which conduct cells to DNA repair, cell cycle

arrest, or apoptosis. Studies show that there is a strong correlation

between these pathways activation and OS with higher tumor grade

and shorter patient survival because cancer cells heavily rely on

the protective role of DDR. There is also some evidence that the

suppression of these pathways by PARP1, Chk1, ATM, ATR, and

DNA‐PKcs inhibitors reduce drug resistance and enhance the

effectiveness of chemotherapy in OS (Biermann et al., 2013; X. Li

et al., 2020; Lindsey et al., 2017; Park et al., 2018). Thus, resistance to

standard therapies makes it challenging to gain absolute control over

tumors progression and metastasis, and this issue highlights the

necessity of improving treatment regimens and the identification of

novel therapeutic targets. The current study will discuss the role of

the DDR pathway in OS development and then review different DDR

disorders involved in OS chemoresistance. Finally, we will summarize

the present DDR inhibitors, which their effects on increasing OS

sensitivity have been studied.

2 | DDR SIGNALING PATHWAYS IN OS

DDR is a multistep process that begins with proteins known as

"sensors" binding to DNA lesions. Transducers and their "mediators"

bridge the gap between DDR sensors and "effectors," which amplify a

damage‐related signal (Gorgoulis et al., 2018). Sensing kinases,

including ATM, ATR, and DNA‐PK (DNA‐dependent protein kinase)

recognize DNA damage, then orchestrate kinase cascade, which

overall leads to DSB or SSB signaling amplification and DDR pathway

facilitation. Therefore, the dysfunction of these proteins leads to

genomic instability and OS tumorigenesis (Huen & Chen, 2008). In

the coming sections, we will discuss the dysregulation of DDR's major

components in OS.

2.1 | ATM/ATR signaling pathway

ATM and ATR have a vulnerable cross‐talk in the presence of DNA

lesions. On this basis, experimental data revealed that ATM and ATR

TABLE 1 Important sensors and transducers in DNA damage response signaling pathway in osteosarcoma

Key proteins Roles Reference

Sensors MRN complex Detection of DNA lesions, has a key role in the alternative

lengthening of telomeres (ALT) process

(X.‐D. Zhu et al., 2000)

H2A‐X involved in sensing, signaling, and repairing of DNA damage (Kopp et al., 2019)

RPA Detection of ssDNA and attraction of ATR (Sadoughi et al., 2021)

PARP‐1 Poly ADP‐ribosylation of proteins to act as a stress sensor (Chaudhuri & Nussenzweig, 2017)

Ku70/80 Detection of DSB and attraction of DNA‐PKcs (Yue et al., 2020)

Transducers and
mediators

ATM Activation of Chk‐2 signaling pathway, and γH2A‐X (Sadoughi et al., 2021)

Chk‐2 Phosphorylation of downstream mediators (Sadoughi et al., 2021)

P53 p21synthesis (Y. Sun et al., 2016)

RB protein Suppression of E2Fs and cell cycle regulation (Nathan et al., 2009)

ATR Activation of Chk‐1 signaling pathway (Srinivas et al., 2019)

Chk‐1 Inactivation of CDC25C and CDC25A, activation of Wee‐1 (Boudny & Trbusek, 2020)

DNA‐PKcs Phosphorylation of downstream factors (Yue et al., 2020)

Abbreviations: ATM, Ataxia telangiectasia mutated; ATR, Ataxia telangiectasia and Rad3 related; Chk, checkpoint kinase; MRN, Mre11‐Rad50‐Nbs1;
PARP‐1, poly (ADP‐ribose) polymerase 1; RB, retinoblastoma; RPA, replication protein A.
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appear to phosphorylate each other and also positively stimulate the

activation and localization of each other at the site of the lesion. Both

proteins involve in the phosphorylation of downstream components

to regulate DNA repair or apoptosis (Jin & Oh, 2019). ATM and ATR

use multiple branches and molecules to regulate the DDR signaling

pathway in OS (Table 1).

2.1.1 | ATM‐Chk2‐p53 and Rb pathway

ATM is a serine/threonine kinase that phosphorylates checkpoint

kinase 2 (Chk2) after double‐strand DNA damage. ATM stimulates

Chk2 activation, which induces p53 ser 15 and ser 20 phosphoryl-

ation. Now, activated p53 inhibits CDKs via p21 (CDKN1A)

stimulation (Sadoughi et al., 2021). Thus, one of the most important

substrates that participate in the ATM kinase pathway is p53 protein

as a tumor suppressor protein. P53 genes can be mutated, and these

mutations are usually rearrangements (50%), or missense mutations

(22%), nonsense mutations (16%), deletions (6%) that result in p53

protein loss‐of‐function, which is detected in OS patients (Czarnecka

et al., 2020; Thoenen et al., 2019). Therefore, it has been notified that

the most frequent gene mutation in OS is p53. In addition, a

considerable number of studies have revealed that p53 loss of

function is associated with OS progression. Point mutations and

structural variations especially intron 1 rearrangements in p53 genes

are the most important victims in unrestrained cell cycle progression.

Mutated‐p53 cannot bind to DNA and regulate gene expression as a

result of changing amino acid sequences (Adhikari & Iwakuma, 2009).

Moreover, structural variations create changes in the three‐

dimensional structure of TP53, which negatively affects p53 DNA

binding capacity (Chandar et al., 1992). In this regard, genome

sequencing has shown that in 26% and 55% of OS cases, there are

p53 mutations and conformational changes respectively (Chen

et al., 2014). Other studies have also confirmed the involvement

of p53 misfold and mutations in OS cases (Ribi et al., 2015;

Sayles et al., 2019). For example, in one of these studies, an

investigation on OS tumor xenografts has reported that structural

variations in p53 and RB were more than other investigated genes

(Sayles et al., 2019). In relation to this, encouraging evidence shows

that when the mutant type of p53 is present in the cells, the total

level of p53 is high. Therefore, a systematic review was conducted to

investigate the relationship between p53 expression level and

OS prognosis. In this study, data revealed that p53 upregulation

results in a lower survival rate in OS patients. Collectively, p53 has

been introduced as a valuable biomarker for evaluating OS survival

rate (Fu et al., 2013).

The retinoblastoma susceptibility gene (RB1) is another tumor

suppressor protein that is a downstream effector of the ATM‐Chk2‐p53

F IGURE 1 DNA damage response signaling pathways involved in osteosarcoma. (a) Ataxia telangiectasia mutated (ATM)‐Chk2‐p53
conducts cells to p21 activation which interacts with E/cdk2, suppresses Rb phosphorylation and E2F activation, resulting in cell cycle arrest.
(b) Ataxia telangiectasia and Rad3 related‐Chk1 signaling regulates three phases in cell cycle. In S phase, checkpoint kinase 1 (Chk1) inhibits
CDC25A and causes cell arrest. In G2 phase, Chk1 involves in the phosphorylation and inactivation of WEE1 kinase and CDC25C phosphatase,
conducting to cyclin‐dependent kinase 1 (CDK1) suppression and cell arrest. In mitosis, Chk1 activates spindle checkpoints and prohibits mitosis.
(c) Ku70/80 binds to double‐stranded break (DSB)and recruits DNA‐PKcs activates downstream effectors and causes DNA repair. (d) Poly
(ADP‐ribose) polymerase 1 recognizes and binds to both single‐stranded break and DSB, then recruits BRCA1/2, DNA‐PKcs, xeroderma
pigmentosum complementation group C (XPC), XPA, XRCC1, ATM, and MRE11 to mediate nonhomologous end joining, nucleotide excision
repair, base excision repair, and HR pathways
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pathway and involves cell cycle regulation (Harrington et al., 1998).

In detail, after p53 activation p21synthesis upregulates and binds to

the cyclin E/cdk2, and consequently blocks the phosphorylation of

Rb protein, leading to E2F suppression and finally cell cycle arrest.

Thus, mutated p53 could not activate p21 and its downstream

molecules and caused an uncontrolled cell cycle and cancer formation

(Knappskog et al., 2015). Just like p53 alteration, the RB gene usually

experiences structural variations and point mutations in OS cases with

30% and 10%, respectively (Tang et al., 2008). Another study has also

shown that RB alterations occurred in 10 OS samples among 34 total

cases (Chen et al., 2014). Although a study showed that OS is likely to

be second cancer in patients with retinoblastoma (Draper et al., 1986),

another study has proved that RB1 mutations are not responsible

for OS initiation. This study has made it clear that RB1 mutations

accelerate OS progression, not OS formation (Lin et al., 2009). Walkley

et al. (2008) confirmed that the knockout of Rb and p53 genes in

preosteoblastic cells in mice causes OS. Overall, it has been suggested

that RB mutations are associated with OS poor prognosis and cancers

development (Czarnecka et al., 2020) (Figure 1a).

2.1.2 | ATR‐Chk1 pathway

ATR is a serine/threonine kinase that reacts to the single‐strand DNA

break (SSD), double‐strand DNA (DSB) break, replicative stresses of

DNA, and activates Chk1 signaling pathway (Srinivas et al., 2019). In

the ATR‐Chk1 signaling pathway, the RPA (replication protein A)

immediately binds to single‐strand DNA and attracts ATR and its

regulatory unit ATRIP (ATR interacting protein) and other regulatory

factors to the damage site. This complex formation stimulates ATR to

phosphorylate Chk1. Then, chk1 autophosphorylates and causes the

creation of the 14‐3‐3 proteins binding site and finally promotes its

interaction with CDC25 phosphatases (K. Liu et al., 2020). Chk1 has

different actions in different phases of the cell cycle. For example, in

S‐phase, activated Chk1 phosphorylates CDC25A, which results in

CDC25A degradation. Following these steps, DNA replication stalls

because of the reduction of CDK2/Cyclin complex activity. In the G2

phase, Chk1 phosphorylatesWEE1 kinase and CDC25C phosphatase,

which causes cyclin‐dependent kinase 1 (CDK1) inhibition and cell

cycle arrest (Boudny & Trbusek, 2020). Finally, Chk1 plays role in the

regulation of spindle checkpoint and controlling mitosis. Therefore,

Chk1 not only regulates downstream DDR effectors but also stalls

the cell cycle to give enough time to cells especially cancer cells to

repair damages and survive. On this basis, Chk1 depletion in OS cell

lines results in the accumulation of DNA damages and polynucleated

tetraploid, which is finally associated with cell death (Carrassa

et al., 2009). Moreover, studies show that the stage of cancer and

the life expectancy of a patient is associated with ATR expression.

Cancer cells require a high level of ATR to keep them healthy

from chemotherapy and radiotherapy (Gorecki et al., 2020). For

example, a study in 2020 has reported that ATR expression and

activation in non‐survived patients was higher than this percentage in

survived‐OS patients. Additionally, an analysis of the experimental

data in the present study showed that ATR suppression by either

siRNA or berzosertib causes Chk1 inhibition, γH2AX expression, and

PARP cleavage, which overall halts the DDR process, decreases

metastasis in OS cell lines. As a result, ATR can be a proper biomarker

to evaluate OS prognosis (X. Li et al., 2020) (Figure 1b).

2.2 | DNA‐PKcs pathway

DNA‐PKcs is a member of the PI3K‐related kinase (PIKK) family and

is one of the essential factors in orchestrating the nonhomologous

end joining (NHEJ) pathway and repairing DNA damages to survive

cells. In this regard, some studies have assessed the involvement of

this protein in cancers development like OS (Toulany et al., 2017). For

instance, a study confirmed that there is a positive relationship

between DNA‐PKcs protein expression and OS cells. Indeed, OS cells

use the higher expression of DNA‐PKcs to escape DNA damage

accumulation and cell death (Mamo et al., 2017). DNA‐PKcs

overexpression is identified not only in OS cells but also in

OS‐treated cells by drugs. According to this claim, the experimental

analysis of a study has suggested that DNA‐PKcs may increase P‐gp

expression in OS cells by enhancing the PI3K/AKT signaling, which

may lead to Chemoresistance in these cells (K. Li, Li, et al., 2016; Serej

et al., 2018). Another study has illustrated that DNA‐PKcs and

γH2AX (DNA damage marker) are relatively low in OS cell line MG63,

whereas the expression of these two components increases and

decreases in OS treated cells respectively. Now, when DNA‐PKcs is

inhibited by 10 μM NU7026, the expression of these two factors

converses, which leads to DNA damage accumulation and OS cell

toxicity (Tsialikas & Romer‐Seibert, 2015). Taken together, the DNA‐

PKcs pathway has a function in OS progression (Figure 1c).

2.3 | PARPs pathway

Poly (ADP‐ribose) (PAR) polymerase‐1 (PARP‐1) is a member of the

nuclear PARP enzyme family contributing to posttranscriptional

modification of proteins through ADP‐ribosylation from donor NAD

+ (Sadoughi et al., 2021). PARP‐1 is involved in DDR in two ways;

first, it acts as a sensor protein and recognizes the damages.

Secondly, this protein appears to recruit DNA repair machinery to

the damage site (Y. Wang, Luo, et al., 2019). In detail, PARP‐1 has

both direct and indirect functions in different DDR pathways.

Following DNA damage, PARP‐1 can detect the damage site and

recruit meiotic recombination 11 homolog 1 (MRE11), which

orchestrates downstream factors and consequently leads to DNA

repair. In addition to MRE11 recruitment, PARP‐1 is responsible to

recruit XRCC1 in base excision repair (BER) and xeroderma

pigmentosum complementation group A (XPA) and XPC in nucleotide

excision repair (NER). When it comes to DSB, PARP‐1 involves in HR

repair through the recruitment of BRCA1 and ATM at the site of

damage. Moreover, MRE11 recruitment by PARP‐1 can create 3’

single‐stranded DNA (ssDNA) overhangs, which is essential during
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HR initiation. Given the role of PARP‐1 in NHEJ, it is associated with

DNA‐PKcs and BRCA1/2 functional activity (Alemi et al., 2021; Y.

Wang, Luo, et al., 2019). In this regard, PARP‐1 inhibition can

interfere with DNA repair and the cell cycle, which is one of the

suggested mechanisms for cancers treatment (Pascal, 2018). To

address the low survival rate among overexpressed‐PARP1 OS

patients, the administration of PARP1 inhibitors have been intro-

duced as an effective approach in OS therapy (Engert et al., 2017;

Heidler et al., 2020; Kukolj et al., 2017; T. J. Liu et al., 2002;

Park et al., , 2018) (Figure 1d).

3 | DDR ROLE IN OS CHEMORESISTANCE

Chemoresistance is one of the most important obstacles in the

effective treatment of various cancers, including OS. Chemoresis-

tance refers to cancer cells’ resistance to chemotherapy agents that

can lead to chemotherapy failure and disease recurrence. Cancer cells

resist chemotherapy by a variety of mechanisms. One of these

mechanisms is increasing the expression of ABC family transporters,

which leads to an increase in the efflux of drugs outside the cell and a

decrease in the effective concentration of chemotherapy drugs inside

the cell (Vaghari‐Tabari et al., 2020). Strengthen antioxidant defense

and weaken the effect of chemotherapy drugs in causing ROS‐

induced apoptosis, enhanced antiapoptotic proteins expression such

as BCL‐2, and weaken proapoptotic proteins expression such as BAX

and epithelial–mesenchymal transition (EMT) upregulation can be

considered as other causes of the chemoresistance in malignant cells

(Vaghari‐Tabari et al., 2020). Damage to the DNA of cancer cells and

induction of apoptosis are the main goals of chemotherapy drugs and

enhancement of DNA repair ability is another most essential

mechanism of chemoresistance in cancer cells. Studies to date have

shown that DDR has an interesting association with chemoresistance

in OS (Marchandet et al., 2021). In the following, we will briefly

review the role of some components of the above DDR pathways in

OS chemoresistance.

3.1 | ATM‐Chk2‐p53 and Rb pathway and
chemoresistance

The relationship between ATM‐Chk2‐p53 and Rb pathway with

chemoresistance has been shown by some studies. ATM appears to

be involved in the resistance of OS cells to cisplatin (D. Wang, Qian,

et al., 2019). It seems that ATM can enhance the stabilization of

ZEB1, which can enhance homologous recombination‐dependent

DNA repair (D. Wang, Qian, et al., 2019; P. Zhang et al., 2014). In

addition, increasing the expression of ZEB1 appears to attenuate the

effects of miR‐34 on reducing the expression of P‐gp, an important

ABC family transporter, in OS cells (Yan et al., 2018). Following

genotoxic stress, ATM appears to be involved in enhancing Rad51

activity through PALB2 phosphorylation in OS cells. One study

showed that the expression of Rad51, as a central recombinase in the

HR pathway, was increased after the treatment of OS cells with

epirubicin and cisplatin. This protein seems to be involved in

chemoresistance by attenuating the cytotoxicity of these drugs and

enhancing proliferation (Du et al., 2011). As noted in the previous

section, p53 is a key player in ATM‐Chk2‐p53 and Rb pathway. P53

appears to be necessary for the induction of apoptosis by

doxorubicin in OS cells (Y. Sun, 2016). One study has shown that

transfecting wild‐type p53 can significantly attenuate the resistance

of OS cells to Taxol, doxorubicin, and cisplatin. It appears that p53

can increase chemosensitivity in multidrug‐resistant (MDR) osteo-

sarcoma cells, possibly through increasing p21 and BAX expression or

inhibiting IGF‐1r (Ye et al., 2016). The rate of p53 loss in OS seems to

be significant (Kansara & Thomas, 2007) and maybe one of the main

reasons for chemoresistance in OS. Some studies have also shown

that Rb deficiency may be associated with methotrexate resistance in

OS cells (Iida et al., 2003), suggesting a role for Rb in increasing

chemosensitivity. Some proteins that affect the ATM‐Chk2‐p53 and

Rb pathways components also have an interesting association with

chemoresistance in OS. For example, Runt‐related transcription

factor 2 (RUNX2) is an essential protein in regulating p53‐

dependent DDR, which seems to cause the resistance of OS cells

to adriamycin through downregulation of the TAp73, a proapoptotic

protein, and p53 (Ozaki et al., 2015). Another example isWIP1. WIP1

is one of the oncogenic factors that attenuate DDR and also plays a

role in strengthening DNA repair (Burdova et al., 2019; Long &

Lin, 2019). One study showed that WIP1 expression increases in OS

cells and can attenuate DDR and reduce the apoptotic effects of

doxorubicin by inhibiting ATM/ATR/p53 signaling (Long & Lin, 2019).

Given the above, it seems that the ATM‐Chk2‐p53 and Rb pathway

can be a good target for overcoming chemoresistance in OS, which

will be discussed in the next section.

3.2 | ATR‐Chk1 pathway and chemoresistance

The ATR‐Chk1 pathway appears to play an important role in the

chemoresistance of OS. One study has shown that higher expression

of ATR is associated with chemoresistance in patients with OS, and

inhibition of the ATR‐Chk1 pathway appears to impair DNA repair in

OS (X. Li et al., 2020). The treatment of OS cells with cisplatin can

enhance the activation of Chk1, which can significantly attenuate the

apoptotic effects of cisplatin through cell cycle arrest and giving time

to cancer cells to repair DNA damages and survive (L. Duan

et al., 2014). Moreover, Wee1, a component of the ATR‐Chk1

pathway, is also engaged in the chemoresistance of OS. This protein

has functions in identifying and repairing DNA damage (di Rorà

et al., 2020). The miR15b/Wee1 axis plays an important role in OS

chemoresistance, in which miR15b can reverse this effect by

inhibiting Wee1. However, the expressions of miR15b decline in

OS (Z. Duan et al., 2017). In the previous section, the association of

Chk1 with reduction of CDK2 activity and cessation of DNA

replication was mentioned. Increased expression of CDK2 at the

time of OS diagnosis is associated with a worse clinical outcome. This
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enzyme can attenuate drug‐induced DNA damage by enhancing DNA

repair and participating in the resistance of OS cells to both

doxorubicin and cisplatin (Vella et al., 2016). In general, the ATR‐

Chk1 pathway seems to have an interesting relationship with DNA

repair and plays an important role in chemoresistance in OS, targeting

this pathway may be an effective approach to overcome chemore-

sistance in OS. This will be discussed in the next section.

3.3 | DNA‐PKcs pathway

It seems that DNA‐PKcs may be involved in DNA repair following

treatment of OS cells with cisplatin and etoposide, and attenuate the

apoptotic effects of chemotherapy drugs on OS cells (X. Li

et al., 2015). One study has shown that microtubule affinity‐

regulating kinases (MARKs) may play a role in OS chemoresistance

by amplifying PI3K/AKT signaling and subsequently amplifying DNA‐

PKcs and ultimately enhancing DNA repair. PI3K/AKT signaling

seems to be able to enhance the expression of DNA‐PKcs in OS cells

(Xu et al., 2020). Besides, the experimental analysis of a study has

suggested that DNA‐PKcs may increase P‐gp expression in OS cells

by enhancing the PI3K/AKT signaling, which may lead to chemore-

sistance in these cells, suggesting that there was an interesting

association between PI3K/AKT, DNA‐PKcs, and chemoresistance in

OS cells. It should be noted that DNA‐PKcs overexpression is

identified not only in OS cells but also in OS‐treated cells by drugs

(K. Li, Li, et al., 2016; Serej et al., 2018). Therefore, it seems that the

DNA‐PKcs pathway is a suitable target for attenuating DNA repair

following chemotherapy and increasing chemosensitivity in OS. In the

next section, the effects of inhibition of this pathway on the OS

chemoresistance cells will be discussed.

3.4 | PARPs pathway

Poly (ADP‐ribose) polymerase 1 (PARP1) is another important factor

involved in DDR that appears to be involved in the OS chemore-

sistance (Huber et al., 2004). PARP‐1 may increase the cisplatin

resistance through enhancing the ERK1/2 signaling pathway. The

knockdown of PARP1 decreases the expression of Bcl‐2 and cyclin

D1 and increases the expression of caspase 3 and Bax in OS cells,

which clearly shows the role of PARP‐1 in attenuating apoptosis

(S. Li, Cui, et al., 2016). Another study has also proved that PARP1

involves the resistance of OS cells to doxorubicin (Park et al., 2018).

Furthermore, Sirtuin6 (SIRT6) is an important protein in DDR and

involves PARP1 activation and base excision repair (Lombard

et al., 2008; Onn et al., 2020). A recent study has shown that this

protein is interconnected with reducing the effect of drugs on OS

cells. SIRT6 can attenuate the antiproliferative and apoptotic effects

of doxorubicin on OS cells by increasing the expression of BCL2, as

an antiapoptotic protein, and decreasing the expression of

proapoptotic proteins such as BAX and cleaved caspase 3. This

study also announced that DNA repair pathway suppression in OS

cells overexpressing SIRT6 could significantly increase the cytotoxic

effects of doxorubicin (Z. Zhang et al., 2020), indicating the role of

SIRT6 and DDR in the chemoresistance of OS cells. According to

these findings, inhibition of PARP1 or the proteins involved in its

activation could be a useful approach to increase chemosensitivity

in OS. All of the findings reviewed in the above sections suggest

that important components involved in DDR play a significant role

in OS chemoresistance and can be considered as potential

therapeutic targets, which will be discussed in the next section

(Figure 2).

4 | INCREASING CHEMOSENSITIVITY IN
OS BY THE COMBINATION OF
CHEMOTHERAPY AND DDR INHIBITORS

The use of DDR inhibitors as an adjunct can increase the

effectiveness of chemotherapy by reducing cancer cells’ che-

moresistance. Numerous inhibitors have been identified for

various DDR pathway proteins. The combination of these

inhibitors with routine chemotherapy agents has been studied

both in vivo and in vitro in OS. In this section, we review the

current achievements in this field.

4.1 | PARP1 inhibitors

PARP1 as a damage sensor takes part in three DDR pathways

including BER, NHEJ, and HR (Ray Chaudhuri & Nussenzweig, 2017).

Accordingly, cancer cells are positively interrelated with PARP1

expression and combating cell death. In a huge number of studies,

PARP1 inhibitors are the most common DDR inhibitors widely used

in combination with chemotherapy for treating many cancers

including ovarian cancer, breast cancer, and pancreatic cancer

(Appleman et al., 2019; Hurley et al., 2019; Oza et al., 2015; Pothuri

et al., 2020; Sandhu et al., 2013; Tuli et al., 2019). Induced apoptosis

and reduced cell growth and invasion are the consequences of using

these inhibitors in combination with chemotherapeutic drugs (Zheng

et al., 2011). Regarding Ewing sarcoma, PARP inhibitors such as

Olaparib are approved to be effective in combination with

chemotherapy (Kiss et al., 2020; Ordóñez et al., 2015; Pignochino

et al., 2017). Using this agent with Trabectedin increases DDR

process dysregulation and increases the amounts of DNA fragmen-

tations as a result of increased DNA damage (Ordóñez et al., 2015).

Along with Trabectedin and cisplatin, doxorubicin‐sensitizing is

also possible through the usage of Olaparib (Park, 2018).

3‐aminobenzamide is another useful PARP inhibitor that can elevate

the sensitivity of OS and ovarian tumor cells to cisplatin in a time‐

and dose‐dependent manner (J. Zhang et al., 2013; Zheng et al., 2011).

Talazoparib accompanied by temozolomide (TMZ) displayed inter-

esting results in lung cancer (Lok et al., 2017), glioblastoma (Kizilbash

et al., 2017), and Ewing sarcoma (Schafer et al., 2020). This

combination in OS cooperated to induce apoptosis by BAX, BAK,
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and caspase activation as well as decreasing the mitochondrial

membrane potential (MMP), and fragmentation of the DNA (Engert

et al., 2017). However, along with these effects of talazoparib, it

cannot be neglected that only HR‐ and/or BRCA1/2‐deficient OS are

responsive to this agent (Engert et al., 2017). This limitation should be

considered before decision‐making for OS patients. Nicotinamide

mononucleotide adenylyltransferase‐1 (NMNAT1) is another enzyme

employed in DDR, and studies have shown that it is effective on

U‐2OS OS cells (Kiss et al., 2020). Cisplatin and doxorubicin have

more efficacies on OS cells when used with NMNAT1 inhibitors

because of their effects on limiting the function of PARP1. However,

impaired cellular bioenergetics are indispensable parts of the

NMNAT1's effects (Kiss et al., 2020). To sum up, PARP1 inhibitors

can use to increase the effectiveness of therapy in OS patients.

4.2 | CHK inhibitor

As we discussed before, CHK is one of the key components in DDR

and its inhibition by different inhibitors has been evaluated in cancer

therapy (Endersby et al., 2021; Thompson, Meuth, et al., 2012; Zhou

et al., 2017). For example, MK‐8776 is a Chk1 inhibitor that is used

for sensitizing lung cancer and breast cancer (Grabauskiene

et al., 2013; Zhou et al., 2017). AZD7762 is another CHK inhibitor

that is demonstrated to increase γH2AX expression, apoptosis, and

mitotic catastrophe when combined with cisplatin in OS cells (J. Zhu

et al., 2019). However, this result should be confirmed by more

clinical trials. Prexasertib is another Chk1 inhibitor that might also be

competent for increasing cisplatin potency on OS cells (Heidler

et al., 2020). In this study, Heidler et al. used Prexasertib, cisplatin,

F IGURE 2 Schematic representation of increasing chemosensitivity in osteosarcoma by the combination of chemotherapy and DNA damage
response (DDR) inhibitors. Several types of inhibitors have been identified that can reduce chemotherapy resistance through inhibition of DDR
pathway proteins when combined with standard treatment
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and talazoparib to reduce clonogenic survival by inducing apoptosis

in OS cells. For using Chk1 inhibitors in clinics, Massey (2016)

showed that the combination of Chk1 and ATR inhibitors would be

more effective in increasing the general levels of replication stress;

however, using this combination as a clinical procedure for OS cases

requires further investigations. Concerning increasing the clinical

outcome and therapy's efficacy, detecting the nuclease activity of

Mre11 is another strategy that might be useful. Thompson et al.

combined a specific Mre11 inhibitor with MK‐8776 (Chk1 inhibitor)

and identified resistance afterward. They suggested that Mre11 can

be used for determining whether a tumor is sensitive to MK‐8776 or

not (Thompson, Montano, et al., 2012).

4.3 | ATM and ATR inhibitors

ATM and ATR are two well‐studied factors in the DDR process.

Encouraging evidence showed that the inhibition of ATM and ATR is

associated with chemosensitivity. The inhibition of ATM and ATR has

been reported to be effective in glioblastoma and esophageal

squamous cell carcinoma sensitization (S. Liu et al., 2015; Shi

et al., 2018). LB100 is a protein phosphatase 2A inhibitor whose

main effect is not on ATM or ATR, but it is approved to affect these

protein kinases among all its target proteins, as well (C. Zhang

et al., 2015). In addition to that, influencing p53 is also helping this

agent's effectiveness in increasing OS cell death and decreasing

metastasis after cisplatin treatment (C. Zhang et al., 2015). DDRI‐18

or 3,3′‐(1H,3′H‐5,5′‐bibenzo[d]imidazole‐2,2′‐diyl) dianiline is

another DDR inhibitor whose function is not specific to ATM and

affects plenty of DDR‐related proteins (Jun et al., 2012). DDRI‐18

increases the sensitivity to doxorubicin, etoposide, bleomycin, and

camptothecin due to its broad range of effects but its mechanism of

action is still not clear (Jun et al., 2012). Administering noncoding

RNAs, which has attracted a lot of attention, is also examined for

chemosensitizing OS cells. MiR‐590 is one of the microRNAs that

researchers utilized for inducing the response of these cells to

doxorubicin. This study also found that this miRNA does this function

through the ATM‐p53 signaling pathway (Long & Lin, 2019). Just like

ATM, targeting ATR is associated with the suppression of DDR and

cell proliferation in OS. Berzosertib (ATR inhibitor) inhibits ATR‐Chk1

signaling in dose‐dependent manner. For example, 10 μM of

Berzosertib showed OS cells toxicity (X. Li et al., 2020). According

to these findings, ATM and ATR inhibitors can improve the effects of

therapies in OS cases.

4.4 | DNA‐PKcs inhibitors

DNA‐PKcs knockdown is a practical approach to improve DNA

damage accumulation and radiosensitization or chemosensitization in

a variety of cancers like glioma, breast cancer, and OS (Lan et al., 2016;

G. Sun et al., 2017). The expression level of DNA‐PKcs is high when

OS MG63 cell line exposes to cisplatin and etoposide. DNA‐PKcs

suppression sensitizes this cell line to chemotherapy drugs in two

ways. First, DNA‐PKcs knockdown is associated with increasing

apoptotic factors like caspase‐3 and caspase‐10, which develops cells

apoptosis. Secondly, DNA‐PKcs inhibition results in cyclinD1 and

CDK4 reduction, G1 arrest, and finally drug sensitization. In this

study, data showed that after DNA‐PKcs downregulation, G1 arrest

in OS cells treated by cisplatin or etoposide increased by approxi-

mately 20% in experimental groups, compared to control groups. In

conclusion, the IC50 in OS cells cotreated by DNA‐PKcs inhibitors

and chemotherapeutic drugs is significantly low. This cooperation can

be a useful method to improve the efficacy of OS treatment (Tsialikas

& Romer‐Seibert, 2015). As an example, it has been suggested that

KU60648 plays an essential role in increasing OS radiosensitization

through DNA‐PKcs blocking. In other word, the combination of

KU60648 and radiotherapy is a positive method to improve the

efficacy of OS therapy (Mamo et al., 2017). As we mentioned before,

DNA‐PKcs is a member of the PIKK family and there is a homology

between PI3‐kinase catalytic domain and DNA‐PKcs. So, it is not

surprising that wortmannin as a PI3‐kinase inhibitor can negatively

affect DNA‐PKcs activity in OS cells (Kubota et al., 1998). Collect-

ively, radiation or chemotherapy sensitization and effectiveness can

develop through DNA‐PKcs repression.

4.5 | Other inhibitors

Except for the mentioned inhibitors, we only found another research

regarding an inhibitor that can affect other parts of the DDR process.

As reported by Jun et al. (2012) DDRI‐18 can affect many proteins

and thereby sensitize OS cells to four chemotherapeutic drugs, which

are mentioned before. γH2AX histone protein, NHEJ process, and

BRCA1 are prone to be affected by this agent (Jun et al., 2012).

Taken together, PARP1, ATM/ATR, and CHK inhibitors are the most

common agents examined on OS cells. Despite the exciting results of

utilizing these inhibitors, still, there is a lot of room for more

investigations on OS chemoresistance. For instance, in 2013, Dai

et al. (2013) indicated that APE1 expression regulates the expression

of many genes (via miRNAs) and signaling pathways such as p53. The

ability of RAD51 in radio‐sensitizing is also approved, and other

studies show chemosensitizing is also another feature of this

essential protein (Huang et al., 2013; D. Wang et al., 2020). Hence,

we suggest that APE1 and RAD51 inhibitors would also make great

candidates for OS chemosensitizing.

5 | CONCLUSION

DDR is a well‐conserved complex network required for DNA damage

detection and repair, which is activated by DNA SSB and DSB. ATM/

ATR, DNA‐PKcs, PARP1, and Chk1 are the most important members

of DDR, which their dysregulation are known in OS. Overexpression

of these factors is accompanied by chemoresistance of OS to the

routine chemotherapy regimens such as cisplatin, etoposide,
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camptothecin, and doxorubicin. Targeting DDR proteins by specific

inhibitors in combination with chemotherapies can increase the

efficacy of OS treatment. In this regard, PARP1 inhibitors such as

Olaparib, Chk1 inhibitors like AZD7762, and Prexasertibare, ATM/

ATR inhibitors including LB100 and MiR‐590 are the most common

DDR inhibitors, which have the potential to use with chemotherapy

in OS cases. Taken together, DDR inhibitors have shown a promising

role in overcoming OS chemoresistant, and some essential advances

have already been achieved in this regard. However, future studies

are needed to find more effective DDR inhibitors to increase the

success of existing OS treatments.
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